Canonbury Home Learning

Year 5 Maths

Steppingstone activity

Summer week 5 Lesson 1 - 18.05.20

LO: To calculate the area of rectangles.

Success Criteria:

1. First find the width of your rectangle.

2. Now find the length of the rectangle
3. Now calculate length x width
4. Remember your units for area are $\mathbf{c m}^{2}$

Model
Area of rectangles

Area is the space inside a flat 2-D shape (it
can also be the surface of a 3-D object tool)

What is the area of the rectangle?
The area of the rectangle is $24 \mathrm{~cm}^{2}$

The formula for the area of a rectangle

$$
\begin{aligned}
& \text { Length } \times \text { Width }=\text { Area } \\
& 6 \mathrm{~cm} \times 4 \mathrm{~cm}=24 \mathrm{~cm}^{2}
\end{aligned}
$$

Now find these areas:

Make up some of your own.

 PRIMARY SCHOO

Year 5 Maths

Summer week 5 Lesson 1-18.05.20

LO: To calculate the area of rectangles.

Success Criteria:

1. First find the width of your rectangle.
2. Now find the length of the rectangle
3. Now calculate length x width
4. Remember your units for area are cm^{2}

Model:

The formula for the area of a rectangle

$$
\begin{aligned}
& \text { Length } \times \text { Width }=\text { Area } \\
& \qquad 6 \mathrm{~cm} \times 4 \mathrm{~cm}=24 \mathrm{~cm}^{2}
\end{aligned}
$$

Which rectangle has the
greatest area?

$8 \mathrm{~cm} \times 3 \mathrm{~cm}=24 \mathrm{~cm}^{2}$

$$
1 \mathrm{~cm} \times 24 \mathrm{~cm}=24 \mathrm{~cm}^{2}
$$

Canonbury Home Learning

Year 5 Maths

Summer week 5 Lesson 1-18.05.20

What is the area of this shape if:

- each square is 2 cm in length? $60 \mathrm{~cm}^{2}$
- each square is 3.5 cm in length?

Each orange square
has an area of
$24 \mathrm{~cm}^{2}$.
Calculate the total orange area.
Calculate the blue area.
Calculate the green area.
What is the total area of the whole shape?

Orange $=48 \mathrm{~cm}^{2}$
Blue $=72 \mathrm{~cm}^{2}$
Green $=24 \mathrm{~cm}^{2}$
Total $=144 \mathrm{~cm}^{2}$

True or False?

If you cut off a piece from a shape, you reduce its area and perimeter.
Draw 2 examples to prove your thinking.

Estimate the area of each shape and then order from largest to smallest.

> Answer: $A=3 \mathrm{~cm}$
> $\times 7 \mathrm{~cm}=21 \mathrm{~cm}^{2}$
> $B=8 \mathrm{~cm} \times 8 \mathrm{~cm}$
> $=64 \mathrm{~cm}$
> $C=3 \mathrm{~cm} \times 19 \mathrm{~cm}$
> $=57 \mathrm{~cm}^{2}$

Order: B, C, A

Mo buys a house with a small back garden, which has an area of 12 m^{2}.
His house lies in a row of terraces, all identical. $180 \mathrm{~cm}^{2}$ If there are 15 terraced houses altogether, what is the total area of the garden space?

