Year 6 Maths

Developing activity

Lesson 2

LO: TBAT calculate the perimeter of a shape.

Success Criteria:

- 1. The perimeter is the outside space of a shape.
- 2. Add the lengths and widths together.
- 3. Remember rectangles opposite sides are the same length and squares have lengths and widths that are the same size.

Model

Now you try...

Expected/ Greater depth activity

Lesson 1

LO: TBAT solve problems including finding the area of a shape.

Task:

You are going apply your knowledge to solve several problems including area.

Success Criteria:

- 1. Identify the measurements given.
- 2. Convert any measurements if needed.
- 3. Find the area of the shape area = length x width.
- 4. For some questions you may have to compare between 2 measurements using one of the 4 operations (+, -, x or ÷)

Recap:

CANONBURY PRIMARY SCHOOL

Year 6 Maths

Main activity

Complete at least 2 columns, more if you can!

<u>Task 1</u>	<u>Task 2</u>	<u>Task 3</u>	<u>Task 4</u>
Practice Calculate the area and perimeter of each shape.	Arithmetic 8 6 × 5 × 4 =	Problem Solving Task 1 These two shapes have the same perimeter. regular hexagon square	Reasoning Task 1 True or false?
8m 4m	$9 2\frac{1}{5} + 3\frac{2}{5} =$	regular hexagon square	Two rectangles with the same perimeter can have different areas. Explain your answer.
8m 3m 4m	10 2468 + 92 + 276 =	Not actual size The length of each side of the hexagon is 8	
3 m	$0.47 = \frac{?}{100}$	centimetres. Calculate the area of the square	Task 2 A farmer has 60 metres of perimeter fencing.
10 m	12 5494 - <u>2516</u>	Task 2 This shape is made out of four identical curves.	For every 1 m² he can keep 1 chicken.
9 m	13 20.61 × 10 =	Not actual size	How can he arrange his fence so that the enclosed area gives him the greatest area?
6 m	14 5\248 =	The perimeter of the shape is 28 centimetres. A new shape is made out of curves of the same size.	
6 m	14 5) 248 =		

What is the perimeter of the new shape?

Task 3

The following quadrilaterals all have a **perimeter of 36 cm**.

Here is a table to show the length of each side. Complete the table.

One quadrilateral is done for you.

	Side lengths			
square	9 cm	9 cm	9cm	9 cm
rectangle	3 cm			
rhombus	9 cm			
kite	10 cm			

Task 3

Tommy has a $8 \text{ cm} \times 2 \text{ cm}$ rectangle. He increases the length and width by 1 cm.

Length	Width	Area
8	2	
9	3	

He repeats with a 4 cm \times 6 cm rectangle.

Length	Width	Area
4	6	

What do you notice happens to the areas?

Can you find any other examples that follow this pattern?

Are there any examples that do not follow the pattern?