Canonbury Home Learning

Year 6 Maths

Developing activity
Lesson 2

LO: TBAT calculate the perimeter of a shape.

Success Criteria:

1. The perimeter is the outside space of a shape.

2. Add the lengths and widths together.
3. Remember rectangles opposite sides are the same length and squares have lengths and widths that are the same size.

Model

Now you try...

Finding the Perimeter

Year 6 Maths

Expected/Greater depth activity

Lesson 1

LO: TBAT solve problems including finding the area of a shape.

Task:

You are going apply your knowledge to solve several problems including area.

Success Criteria:

```
    1. Identify the measurements given.
    2. Convert any measurements if needed.
    3. Find the area of the shape area \(=\) length \(x\) width.
    4. For some questions you may have to compare between 2 measurements using one of the 4 operations (,,\(+- x\) or \(\div\) )
```

Recap:

Finding the Perimeter: Rectangles and Parallelograms

The perimeter:
$10 \mathrm{~cm}+10 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}=28 \mathrm{~cm}$

Rectangles and parallelograms have two pairs of equal parallel sides, so you could also work it out like this:
multiply 10 cm by 2 and 4 cm by 2 and add the totals together:

$$
10 \times 2=20 \text { and } 4 \times 2=8 \text { so } 20+8=28 \mathrm{~cm}
$$

or
add 10 cm and 4 cm then multiply by 2 : $10+4=14 \longrightarrow 14 \times 2=28 \mathrm{~cm}$

Finding the Area

You can calculate the area of shapes made up of rectangles by breaking them down into individual rectangles.

$10 \mathrm{~cm} \times 3 \mathrm{~cm}=\mathbf{3 0} \mathbf{m}^{\mathbf{2}}$
$6 \mathrm{~cm} \times 7 \mathrm{~cm}=42 \mathrm{~cm}^{2}$
$30 \mathrm{~cm}^{2}+42 \mathrm{~cm}^{2}=72 \mathrm{~cm}^{2}$

Canonbury Home Learning

PRIMARY SCHOO

Year 6 Maths

Main activity

Complete at least 2 columns, more if you can!

Task 3

Tommy has a $8 \mathrm{~cm} \times 2 \mathrm{~cm}$ rectangle. He increases the length and width by 1 cm .

Length	Width	Area
8	2	
9	3	

He repeats with a $4 \mathrm{~cm} \times 6 \mathrm{~cm}$ rectangle.

Length	Width	Area
4	6	

What do you notice happens to the areas?
Can you find any other examples that follow this pattern?

Are there any examples that do not follow the pattern?

