Maths Calculation Policy

Objective and Strategies	Concrete	Pictorial	Abstract
ADDITION Year 1 Number bonds within 20	Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	Use the part-part whole diagram as shown above to move into the abstract. $\begin{aligned} & 4+3=7 \\ & 10=6+4 \end{aligned}$
ADDITION Year 1 Counting	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
ADDITION Year 1 Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make	Use pictures or a number line. Regroup or partition the smaller number to make 10 . $3+9=$ $9+5=14$	$7+4=11$ If I am at seven, how many more do I need to make 10 . How many more do I add on now?

Maths Calculation Policy

ADDITION Year 2 Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.			Add together three groups of objects. Draw recombine the groups to make 10.	a picture to	$\begin{aligned} (4)+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
ADDITION Year 2 Column method - no regrouping	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters. $44+15$			After practically using the Base 10 blocks counters, children can draw the counters/t help them to solve additions.	and place value ns and ones to $\begin{array}{ccc} + & 14 & = \\ \square & B & \square \\ & B & \square \\ & B & \square \end{array}$	$\begin{array}{r} 24+15=39 \\ 24 \\ +15 \\ \hline 39 \end{array}$
ADDITION Year 2 Column method - regrouping	$49+23=$ Make both numbers on a place value grid.		1s	Move from using place value counters to children drawing the counters to help them to solve additions. $49+23=$	${ }^{105}$ ${ }^{15}$ 00° 8088° 00 $\bullet 00$ 105 0^{15} 00 0^{15} 00 0	$\begin{aligned} & 40+9 \\ & \frac{20+3}{60+12}=72 \end{aligned}$

	 Add up the units and exchange 10 ones for 1 ten.	Also, model how to draw 10s and 1s to help work out a calculation.	
ADDITION Year 3/4 Column method - regrouping Year 5/6 Consolidate understanding using numbers with more than 4 digits and extend by adding numbers with up to 3 decimal places.	Make both numbers on a place value grid. Add up the units and exchange 10 ones for one 10. Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added. This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100. As children move on to decimals, money and decimal place value counters can be used to support learning.	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding	Start by partitioning the numbers before moving on to clearly show the exchange below the addition. $\begin{aligned} & 20+5 \\ & \frac{40+8}{60+13} \end{aligned}=73 \begin{array}{r} 536 \\ +85 \\ \frac{621}{11} \end{array}$ As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.

Order of Operations

Children will come across
calculations with multiple operations, so the 'order of operations' are taught to enable children to calculate these correctly.

In the below calculation, the brackets take priority, therefore $6+4$ needs to be calculated first, to give 10. Then $30 \div 10$ can be done to give the answer 3 .
$30 \div(6+4)=$

$$
30 \div 10=3
$$

In the below calculation, the multiplication takes priority, so 5×3 is calculated first, which makes 15 . Then $4+15$ can be done, making 19
$4+5 \times 3=$

$$
4+15=19
$$

Maths Calculation Policy

Objective and Strategies	Concrete	Pictorial	Abstract
SUBTRACTION Year 1 Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-2=4$	Cross out drawn objects to show what has been taken away $15-3=$ \square	Encourage visualisation of the 'whole' number, then subtracting the given number. Encourage the idea of 'counting back' from the larger number at the start. $18-3=15$ $8-2=6$
SUBTRACTION Year 1 Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. $13-4=9$ Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

SUBTRACTION Year 1 Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Draw bars to find Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. the difference between 2 numbers.	Hannah has 23 sandwiches. Helen has 15 sandwiches. Find the difference between the number of sandwiches.
SUBTRACTION Year 1 Part-Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=4$	Use a pictorial representation of objects to show the part part whole model.	5 10 Move to using numbers within the part whole model.
SUBTRACTION $\frac{\text { Year } 1}{\text { Make } 10}$	$14-9=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9 .	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10? How many do we have left to take off?

Now I can subtract my ones.

\qquad
234

- 88

Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.

Now I can take away eight tens and complete my subtraction

Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.

Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.

Step I
10
10
10

10

step 2

This will lead to an understanding of subtracting any number including decimals, starting with the first (usually largest) number.

	5	12		1
2	6	3	.	0
-	2	6	.	5
2	3	6	.	5

Maths Calculation Policy

Objective and Strategies	Concrete	Pictorial	Abstract
$\begin{aligned} & \hline \text { MULTIPLICATION } \\ & \frac{\text { Year } 1 / 2}{\text { Doubling }} \end{aligned}$	Use practical activities to show how to double a number.	Draw pictures to show how to double a number. Double 4 is 8	 Partition a number and then double each part before recombining it back together.
MULTIPLICATION Year 1/2 Counting in multiples	Count in multiples supported by concrete objects in equal groups.	 Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25 \end{aligned}$

MULTIPLICATION Year 1/2 Repeated addition	Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.
MULTIPLICATION Year 1/2 Array sshowing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles \qquad 4 \times \qquad 5 $=$ \qquad 20 \qquad \times 3 \qquad = 6 \qquad	Use an array to write multiplication sentences and reinforce repeated addition. 00000 00000 $\begin{gathered} 5+5+5=15 \\ 3+3+3+3+3=15 \\ 5 \times 3=15 \\ 3 \times 5=15 \end{gathered}$

Show the link with arrays to first introduce the grid method.

4 rows of 10 4 rows of 3

Move on to using Base 10 to move towards a more compact method.

4 rows of 13

Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

\times	30	5
7	210	35

$210+35=245$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

	10
	8
10	100
3	80
	30

X	1000	$\mathbf{3 0 0}$	$\mathbf{4 0}$	2
10	10000	3000	400	20
8	8000	2400	320	16

Maths Calculation Policy

Objective and Strategies	Concrete	Pictorial	Abstract
DIVISION Year 1/2 Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2=4$	Share 8 buns between two people. $8 \div 2=4$
DIVISION Year 1/2 Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $12 \div 3=4$	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. Model physically sharing number into the boxes. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

DIVISION Year 3/4 Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$
DIVISION Year 3 Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder.	Complete written divisions and show the remainder using r.

Maths Calculation Policy

$\frac{\text { DIVISION }}{\text { Year 6 }}$	
Long division	

Children will use long division to divide numbers with up to 4 digits by 2 digit numbers. They will also be taught how to 'chunk out' sections to find the final answer.

